83,063 research outputs found

    A Perspective of River Basin Development

    Get PDF

    A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases

    Full text link
    Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90 degrees scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small differences between scattering in air, and its constituents N2 and O2. Comparison of the experimental spectra with calculations using the Tenti S6 model, developed in 1970s based on linearized kinetic equations for molecular gases, demonstrates that this model is valid to high accuracy. After previous measurements performed at 366 nm, the Tenti S6 model is here verified for a second wavelength of 403 nm. Values for the bulk viscosity for the gases are derived by optimizing the model to the measurements. It is verified that the bulk viscosity parameters obtained from previous experiments at 366 nm, are valid for wavelengths of 403 nm. Also for air, which is treated as a single-component gas with effective gas transport coefficients, the Tenti S6 treatment is validated for 403 nm as for the previously used wavelength of 366 nm, yielding an accurate model description of the scattering profiles for a range of temperatures and pressures, including those of relevance for atmospheric studies. It is concluded that the Tenti S6 model, further verified in the present study, is applicable to LIDAR applications for exploring the wind velocity and the temperature profile distributions of the Earth's atmosphere. Based on the present findings, predictions can be made on the spectral profiles for a typical LIDAR backscatter geometry, which deviate by some 7 percent from purely Gaussian profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in the Earth's atmosphere

    Effect of the W-term for a t-U-W Hubbard ladder

    Full text link
    Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing is unclear and models with additional interaction terms have been studied. In one of these, the square of a local hopping kinetic energy H_W was found to favor pairing. However, such a term can be separated into a number of simpler processes and one would like to know which of these terms are responsible for enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard ladder

    NASA-tricot - A lightweight radar reflective, knitted fabric

    Get PDF
    Fabric knitted on conventional knitting machines uses commercially available yarns, has high aerodynamic drag capability, and is relatively inexpensive. The two yarn components used are 15-denier nylon monofilament and aluminized Mylar tape

    The COBE Normalization of CMB Anisotropies

    Get PDF
    With the advent of the COBE detection of fluctuations in the Cosmic Microwave Background radiation, the study of inhomogeneous cosmology has entered a new phase. It is now possible to accurately normalize fluctuations on the largest observable scales, in the linear regime. In this paper we present a model-independent method of normalizing theories to the full COBE data. This technique allows an extremely wide range of theories to be accurately normalized to COBE in a very simple and fast way. We give the best fitting normalization and relative peak likelihoods for a range of spectral shapes, and discuss the normalization for several popular theories. Additionally we present both Bayesian and frequentist measures of the goodness of fit of a representative range of theories to the COBE data.Comment: References updated, one figure redraw

    Hot and crispy : CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) and Cas (CRISPR-associated) genes are widely spread in bacteria and archaea, representing an intracellular defence system against invading viruses and plasmids. In the system, fragments from foreign DNA are captured and integrated into the host genome at the CRISPR locus. The locus is transcribed and the resulting RNAs are processed by Cas6 into small crRNAs (CRISPR RNAs) that guide a variety of effector complexes to degrade the invading genetic elements. Many bacteria and archaea have one major type of effector complex. However, Sulfolobus solfataricus strain P2 has six CRISPR loci with two families of repeats, four cas6 genes and three different types of effector complex. These features make S. solfataricus an important model for studying CRISPR-Cas systems. In the present article, we review our current understanding of crRNA biogenesis and its effector complexes, subtype I-A and subtype III-B, in S. solfataricus. We also discuss the differences in terms of mechanisms between the subtype III-B systems in S. solfataricus and Pyrococcus furiosus.PostprintPeer reviewe
    • 

    corecore